5530 Strain Gauge Amplifier

Product Manual
WARNING!

Only qualified personnel who thoroughly understand the operation of this equipment and any associated machinery should install, start-up, or attempt maintenance of this equipment. Non-compliance with this warning may result in serious personal injury and/or equipment damage.

WARNING!

Never work on any control equipment or motors without first removing all power supplies from the equipment.

Caution

This equipment was tested before it left our factory. However, before installation and start up, inspect all equipment for transit damage, loose parts, packing materials, etc.
CONTENTS

Chapter 1 INTRODUCTION

Chapter 2 HARDWARE OVERVIEW

- Power Supply ... 2 - 1
- Strain Gauge Amplifier .. 2 - 1
- Specifications 2 - 2

Chapter 3 INSTALLATION INSTRUCTIONS

- Mounting 3 - 1
- Bandwidth Configuration ... 3 - 1
- Wiring 3 - 2
 - Signal Wiring Type .. 3 - 2
 - Wire Routing ... 3 - 2
 - Terminating Shielded Cable .. 3 - 2
 - Grounding 0 VDC Signal Common ... 3 - 2
- Terminal Designations .. 3 - 3

Chapter 4 LOADCELL CALIBRATION

Appendix A APPLICATION NOTES
Chapter 1 INTRODUCTION

The 5530 Strain Gauge Amplifier amplifies the low level output signal from loadcells for use as tension indication or as a feedback signal for material tension control. Figure 1 shows a typical loadcell application using a pair of loadcells in a wheatstone bridge configuration.

Figure 1 -- Typical Loadcell Application

A pair of Loadcells combines tension and compression strain gauges into a wheatstone bridge configuration. The force, F_t, created by tension in the web bends the beams slightly causing the gauge resistances to change. The resistance change produces a low-level voltage output that is proportional to web tension.

The 5530 Strain Gauge Amplifier takes the voltage output from the loadcells and gives out a +10 to -10 volt tension signal which is proportional to F_t.

Offset and Span potentiometers on the 5530 allow the loadcell amplifier to be calibrated.

The Excite potentiometer on the 5530 scales the excitation voltage supplied to the loadcell.
The 5530 contains a power supply circuit and strain gauge amplifier circuit on one printed circuit board. The unit mounts on most standard DIN rail types. Figure 2 shows a simple block diagram of the 5530 connected to two loadcells.

POWER SUPPLY

The 5530 converts the +24 VDC supply into ±15 VDC for the amplifier circuit and the excitation supply for the loadcells. The excitation supply provides +3.5 to 10.0 VDC. The voltage is set by the **Excite** potentiometer as required for the loadcell.

STRAIN GAUGE AMPLIFIER

The amplifier circuit uses the **Offset Adj.** potentiometer to compensate for offsets in the loadcells. The **Span Adj.** potentiometer can amplify the signal between 20 to 250X. The output provides a -10 to +10 VDC signal but is typically calibrated to provide +9 VDC when the web tension is maximum.
Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>2.8” x 3.2” x 2.0” (H x W x D)</td>
</tr>
<tr>
<td>Input Differential</td>
<td>40 - 500 mV</td>
</tr>
<tr>
<td>Input Impedance</td>
<td>3.5 K ohms typically</td>
</tr>
<tr>
<td>Excitation Supply</td>
<td>Adjustable 3.5 to 10.0 VDC, 100 mA maximum</td>
</tr>
<tr>
<td>Output Span</td>
<td>-10.0 to +10.0 VDC</td>
</tr>
<tr>
<td>Output Gain</td>
<td>Adjustable: 20 - 250</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>0-50 Degrees C</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Adjustable; 400 Hz standard</td>
</tr>
<tr>
<td>Functionality</td>
<td>Adjustable Filter/Bandwidth, Zero offset ± 100 percent of input</td>
</tr>
<tr>
<td>Required Supply Voltage</td>
<td>+18.0 to +27.6 VDC @ 130 mA, 24 VDC nominal</td>
</tr>
<tr>
<td>Loadcell Compatibility</td>
<td>Type – Solid State Strain Gauge</td>
</tr>
<tr>
<td>Output</td>
<td>-2.5 VDC Nominal Bias Plus, 200 mV Nominal Cell Output, 50 mV minimum Output Per Cell, 500 mV maximum Output Per Cell</td>
</tr>
</tbody>
</table>
Chapter 3 INSTALLATION INSTRUCTIONS

The 24 VDC power supply for the 5530 is fused internally with a non-replaceable 2/10 amp fuse.

MOUNTING

Caution

This unit contains ESD (Electrostatic Discharge) sensitive parts. Observe static control precautions when handling, installing, and servicing this device.

The 5530 should be mounted inside a grounded metal enclosure on TS 32 and TS 35 DIN rail.

Figure 3 - Connection Diagram

BANDWIDTH CONFIGURATION

The default bandwidth, 400 Hz, should work with most applications. SSD Drives does not recommend changing its value. If a different bandwidth is required, change the bandwidth capacitors, BW1 and BW2. Use the formulas below to calculate the values of the capacitors required.

\[
BW1 = 0.015 \mu F \left[\frac{1 \text{ kHz}}{F_c (@ 0 \text{ dB})} - 1 \right]
\]

\[
BW2 = 0.0022 \mu F \left[\frac{1 \text{ kHz}}{F_c (@ 0 \text{ dB})} - 1 \right]
\]

\[
F_c \equiv \text{Cutoff Frequency (10 Hz - 1 kHz)}
\]
The wiring configuration for a typical application of the 5530 is shown in Figure 3. Exercise special care wiring the loadcells due to the low level of the signals. Each shielded cable from the loadcell must be grounded at the enclosure housing the 5530 only. Using the following guidelines will help limit noise.

Signal Wiring Type

Signal wiring is to be shielded cable unless noted otherwise. The following types of shielded cable are recommended for signal wiring unless noted otherwise:

- Two-pair: ALPHA 2466, BELDEN 8723, BICC H8085, UL 2493
- Three pair: ALPHA 6010, BELDEN 8777, BICC H8086, UL 2493.

Wire Routing

Signal wiring (shielded cable) must be routed separately from power (high voltage), control (120 VAC) wiring, and any other non-signal wiring. Install separate conduit for signal wiring only. Within enclosures, harness and route signal wiring separately and as far from non-signal wiring as is possible. Where signal wiring must pass non-signal wiring, cross them at a 90 degree angle. When possible, route power wiring separately from all other wiring.

Terminating Shielded Cable

When using shielded cable, strip back the shield only as far as is necessary to terminate the conductors within. Connect one end of the shield to an enclosure earth ground terminal. Cut off and insulate the other end of the shield unless noted otherwise. If an intermediate junction of shielded cable is required, terminate or splice each shield individually to maintain each shield as a single, continuous conductor.

Grounding 0 VDC Signal Common

The 0 VDC signal common must be connected to earth ground at only one point. Connect a 0 VDC signal common terminal to an earth ground terminal within the enclosure if this connection does not exist elsewhere.
TERMINAL DESIGNATIONS

<table>
<thead>
<tr>
<th>Function</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 VDC Output Common</td>
<td>COM</td>
</tr>
<tr>
<td>-10 to +10 VDC Tension Output</td>
<td>O/P</td>
</tr>
<tr>
<td>0 VDC Power Common</td>
<td>COM</td>
</tr>
<tr>
<td>+24 VDC Power</td>
<td>+24</td>
</tr>
<tr>
<td>0 VDC Excitation Common</td>
<td>COM</td>
</tr>
<tr>
<td>Excitation Supply</td>
<td>EXC</td>
</tr>
<tr>
<td>Negative Input</td>
<td>IN-</td>
</tr>
<tr>
<td>Positive Input</td>
<td>IN+</td>
</tr>
</tbody>
</table>
Chapter 4 LOADCELL CALIBRATION

Calibration of the loadcells requires a voltmeter, a rope, and either a known weight or a spring scale to indicate loading. The tensioning source should be able to generate at least 40 percent of the maximum total material tension.

The following procedure calibrates the 5530 Loadcell Amplifier for +9 volts output at full tension. If an output other than +9 volts is required, reference voltage levels and polarities will be different.

Note: If the loadcells are ever rotated, replaced, or excessively loaded, they should also be re-calibrated per the following procedure.

A. Mount the loadcells and ensure that they are properly oriented to measure the force resulting from material tension. (Refer to instructions provided by the loadcell manufacturer.)

B. Set the excitation supply to the load cells to the manufacturer's recommended value with the Excite potentiometer (usually 5 VDC). With no load on the roll, check that the loadcells give the appropriate output signals to terminals IN- and IN+ (about 50 percent of the excitation voltage when measured with respect to terminal COM). Also ensure that the signals are as free of electrical noise as possible.1 If noise is present, verify that the wiring guidelines in the Installation Instruction were followed.

C. With no material over the tension roll, thread a rope along the center of the exact material path over the tension roll. Figure 4 shows a sample path. The path of the rope over the tension roll must be exactly the same as that of the material.

![Figure 4 - Sample Rope Path](image)

Note: The rope should pass across free spinning rolls only. Ensure uniform tension between the calibration weight and the tension roll.

1The AC ripple should be less than 15 mV at terminals IN+ and IN-. Once the roll is installed, the output will only be close to 2.5 VDC.
Chapter 4 LOADCELL CALIBRATION

To simulate material tension, make a calibration weight or use another method suitable for applying a known amount of tension to the rope. The known amount of tension should be between 40 and 100 percent of full material tension.

Calculate and record this percentage:

<table>
<thead>
<tr>
<th>Calibration Weight</th>
<th>= _____ lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Material Tension</td>
<td>= _____ lbs</td>
</tr>
<tr>
<td>% Tension of Cal. Weight</td>
<td>= _____ %</td>
</tr>
</tbody>
</table>

D. With no load on the rope, record the No Load Values of the loadcell outputs.

Attach the calibration weight to the rope and record the Cal Load Values. The voltages should move equally, in opposite directions from their no load values (2.5V). The voltage to terminal IN- should decrease with load; the voltage to terminal IN+ should increase with load. Reverse the excitation supply wires of any loadcell that gives an incorrect output shift.

<table>
<thead>
<tr>
<th>Left Loadcell (term IN-)</th>
<th>Right Loadcell (term IN+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Load Value: _____ VDC</td>
<td>_____ VDC</td>
</tr>
<tr>
<td>Cal Load Value: _____ VDC</td>
<td>_____ VDC</td>
</tr>
<tr>
<td>Change = No Load - Cal Load: (+) _____ VDC</td>
<td>(-) _____ VDC</td>
</tr>
</tbody>
</table>

E. With no load on the roll, adjust the OFFSET potentiometer for 0 VDC ± 0.1 V output from the amplifier (terminal O/P).

F. Hang the calibration weight from the rope. Adjust the SPAN potentiometer to achieve the correct percentage tension output from the amplifier on terminal O/P (e.g., if the calibration weight is 50 percent of full tension, the output should be 4.5 VDC; 80 percent should yield 7.2 VDC, etc.).

The polarity of the amplifier output signal (terminal O/P) should always be positive. If the voltage on terminal O/P goes negative with load, return to step D.

G. Repeat steps E and F until both the zero and loaded readings of tension output are within 0.1 volt of the correct reading. This tolerance gives 1 percent accuracy.

H. Move the rope to each side of the material path. When loaded, the amplifier should give close to the same output (terminal O/P) as when the load is in the center. This step checks for equal outputs from the loadcells. If the reading differs from one side to the other, check the orientation of the loadcells and verify that they have equivalent ratings.
Appendix A APPLICATION NOTES

Cleveland Machine Controls
Type 1T and 2T Transducers

Dover Flexo Electronics, Inc.
Type BR, FL, PB, S, and UPB Transducers